a2 United States Patent

Arun

US009417911B2

US 9,417,911 B2
Aug. 16, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR SCALABLE
ASYNCHRONOUS COMPUTING
FRAMEWORK

(71) Applicant: Live Planet LL.C, Los Angeles, CA
(US)

(72) Inventor: Rohan Maroly kovumal Arun,
Calabasas, CA (US)

(73) Assignee: LIVE PLANET LLC, Los Angeles, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/537,768

(22) Filed: Nov. 10, 2014
(65) Prior Publication Data
US 2015/0261571 Al Sep. 17, 2015

Related U.S. Application Data
(60) Provisional application No. 61/952,055, filed on Mar.

12, 2014.
(51) Int.CL

GO6T 1/20 (2006.01)

GOGF 9/48 (2006.01)

HO4L 29/08 (2006.01)

GOGF 3/14 (2006.01)

GO6T 7/00 (2006.01)

GO6T 15/08 (2011.01)

GO6T 17/10 (2006.01)

GOG6T 15/00 (2011.01)

GOGF 9/445 (2006.01)
(52) US.CL

CPC ... GOGF 9/4881 (2013.01); GOGF 3/1438

(2013.01); GOGF 3/1446 (2013.01); GO6F

(2013.01); GO6T 17/10 (2013.01); HO4L
67/1002 (2013.01); GO6T 2200/16 (2013.01);
GO6T 2207/10024 (2013.01); GO6T 2210/52
(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
7,777,741 B2 8/2010 Teler et al.

8,798,965 B2 82014 Quan et al.
9,087,401 Bl 7/2015 Zheng et al.

9,147,268 B2* 9/2015 Chenccccoueueee. GO6T 11/005
2002/0015055 Al* 2/2002 Foran GO6T 15/00
345/679
2005/0041031 Al* 2/2005 Diardcccecevvennnee GO6T 15/005
345/505
(Continued)
OTHER PUBLICATIONS

International Search Report and Written Opinion dated Jun. 19,2015,
from related International Application No. PCT/US2015/019511.

(Continued)

Primary Examiner — Joni Richer
(74) Attorney, Agent, or Firm — Foley & Lardner LLP

(57) ABSTRACT

Systems and methods are described for a distributed data
processing method, including, but not limited to: receiving,
by abackend device, source data; partitioning, by the backend
device, the source data into a plurality of data threads; send-
ing, by the backend device, at least one of the plurality of data
threads to each ofa plurality of user devices; and determining,
by the backend device, a job outcome for the source data
based on a plurality of data thread results, each of the plurality
of data thread results is determined by one of the plurality of
user devices based on the at least one of the plurality of data

3/1454 (2013.01); GO6F 9/445 (2013.01);

threads.

GO6T 1/20 (2013.01); GO6T 7/0046 (2013.01);

GO6T 15/005 (2013.01); GO6T 15/08

T 1 RECEWVING SOURCE DATA FROM DATA SOURCE

RELATING TO DATA 0B

| PARTITIONING SOURCE DATA INTO PLURALITY OF DATA -~
| THREADS

STORING PLURALIFY OF DATA THREADS.

| SENDING AT LEAST ONE DATA THREAD TO EAGH
| AVAILABLE USER DEVICE, EACH LSEN DEVICE HAVING

AT LEAST ONE USER CORE

RECEIVING DATA THRFAD RESULTS SROM FACH USFR

DETERMINING OB OUTCOME BASED ON FHE RECEIVED
DATATHREAD RESULTS

SENDING 308 OUYCOME TO USER DEVICES

8210

-8720

o280

8290

8250

8760

- 200

21 Claims, 10 Drawing Sheets

US 9,417,911 B2

Page 2
(56) References Cited 2011/0115792 A1* 5/2011 Tamaoki GO6T 15/60
345/426
U.S. PATENT DOCUMENTS 2011/0145878 Al* 6/2011 Gronning HO4N 21/234363
725/116
2005/0052452 Al 3/2005 Baumberg 2012/0041722 AL 22012 Quan et al.
2006/0221073 Al 10/2006 Teler et al. 2012/0131591 Al 5/2012 Moorthi et al.
2007/0005795 Al 1/2007 Gonzalez 2013/0038686 Al* 2/2013 Chen ... HO04N 19/597
2007/0195099 A1* 8/2007 Diard ..cccooovrvrinenn. GO6T 1/20 348/43
345/501 2014/0040357 Al 2/2014 McDowell
2008/0168135 Al 7/2008 Redlich et al. 2014/0071234 Al* 3/2014 Millettc.c...... GO1S 17/89
2009/0002263 Al* 1/2009 Pasetto GOGF 3/1438 348/43
345/1.3
2009/0109219 Al 4/2009 DeCoro et al. OTHER PUBLICATIONS
® .
2009/0135180 Al 32009 Li oo G063T4é2{g§ International Search Report and Written Opinion dated Jun. 15,2015,
2009/0160866 Al 6/2009 Pau et al. from related International Application No. PCT/US2015/019531.
2010/0001995 Al* 1/2010 Hamill ..o GO6T 15/005 International Search Report and Written Opinion dated Jun. 19,2015,
345/419 from related International Application No. PCT/US2015/019525.
2010/0141665 Al* 6/2010 Madruga HO41. 67/36 US Office Action dated Apr. 4, 2016 from related U.S. Appl. No.
345/505 14/557,238.
2010/0328325 Al* 12/2010 Sevignycccccccce.. GO6T 1/20
345/522 * cited by examiner

US 9,417,911 B2

Sheet 1 of 10

Aug. 16, 2016

U.S. Patent

0GT 340D ¥3sn

9T 30VIY31INI I01A3A ¥ISN

£9T 3IDIA3Q ¥HOMLIN H3SN

TST AHOW3W 3DIA3A ¥3sN

09T LINN ONISSID0NUd

UorT N 32IA3Q ¥3sN

/ y
/ 7

uorT N 3DIA3Q ¥3ASN

0T 9 3D1A3Q ¥3sSn

OET NYOMILIN

IO

TT DVIHILNI ¥3SN

ETT 30IA3A YYOMLIN

TT AHOW3IW

TTT 40SS3204d

OTT 3DI1A3A ANOVE

TT 321A3Q ANINIVd

BOPT ¥V 33IA3A H3sSN

0¢T ID¥NOS v1iva

U.S. Patent Aug. 16, 2016 Sheet 2 of 10 US 9,417,911 B2

200

RECEIVING SCURCE DATA FROM DATA SOURCE - ~-B210
RELATING TO DATA OB

v

PARTITIONING SOURCE DATA INTO PLURALITY OF DATA |.—-_R220
THREADS

STORING PLURALITY OF DATA THREADS - -B230

¥
SENDING AT LEAST ONE DATA THREAD TO EACH
AVAILABLE USER DEVICE, EACH USER DEVICE HAVING |~ - B240
AT LEAST ONE USER CORE

RECEIVING DATA THREAD RESULTS FROM EACH USER .—..g250
5 DEVICE

K

DETERMINING 108 OUTCOME BASED ON THE RECEIVED | - _B260
3 DATA THREAD RESULTS

SENDING JOB OUTCOME TO USER DEVICES - 8270

FIG. 2

US 9,417,911 B2

Sheet 3 of 10

Aug. 16, 2016

U.S. Patent

g€ "Old

0og™

TeeegrE

V€ "Oid

0TE

£lira pOTE

5POTE

“TUOTE

7 4-e0TE
" eoze

Nt eote

a0ze

" loze

US 9,417,911 B2

Sheet 4 of 10

Aug. 16, 2016

U.S. Patent

ar "old

vy "Old

OPF 01 X31437

Orr Qf X3 LdIA

04p LH153Y¥ GVIHHL vivQ

09% L1NS3Y QVIYHL

0t TN VIVQ IOVIAIL

O

TV NOILYOOT

00% Qv3yHL viva

U.S. Patent

500

Aug. 16, 2016 Sheet S of 10

IDENTIFYING PLURALITY OF AVAILABLE USER DEVICES

k

DETERMINING PROCESSING POWER AND NETWORK
CONDITIONS ASSOCIATED WITH EACH AVAILABLE USER
DEVICE

k

“{ POWER AND/OR NETWORK CONDITIONS ASSOCIATED

ASSIGNING NUMBER OF DATA THREAD(S) TO EACH
AVAILABLE USER DEVICE BASED ON PROCESSING

WITH EACH AVAILABLE USER DEVICE

“~.._ REMAINING?
P

8540
\\
DATA ?

US 9,417,911 B2

-B510

~-B520

~+-B530

NO I YES _B560
- \A
END STANDING BY FOR
B550 ADDITIONAL USER DEVICE
/L .-B570
/ﬁﬁECT!NG ADDITION “t\:>
YES 5
85801\ / USER DEVICE? L
SETTING ADDITIONAL
USER DEVICE AS

AVAILABLE USER DEVICE

FIG. 5

NO

US 9,417,911 B2

Sheet 6 of 10

Aug. 16, 2016

U.S. Patent

9 'Oid

d069 0069 uge9 w069 1069 2069 069 1069
9T 90IA3(Q 49S(1| | ST 90IAa(JasN| | HT 921A0Q 49S1| |€T 921IA9Q 43S | | 2T 901 49sn| | TT 921A3q 4asn1| 0T 221A9 49sN 6 921A3Q 4195
A A N A A A A A
pP8Co 8¢9 q8¢o e8¢9 PS¢o 29¢9 q9¢9 €9¢9
¥ [PB3JYL PUCDS | € PEIYL PUOISS | 7 PBIIYL PUCDIS | T PBIIYL PUODSS | {7 ,PeRUylIsid | € Peasylisild | Z,Pedsylisid | T pessylisiy

L

J

J]

¥

J0gg ,ouleld4 puodss

5069
2T 331IA3(] J3sn

\

BOEY ,DWeld 1Sil

/

q019 9 meEmu\

¥ peaiy] puosas

£ peaJy] puodas

7 Pea1y] puodas

T peaJyL puodas

7 PealyL 1sii4

€ peaJyL sl

Z peauyL 1siiy

4oe9 5069 2069 P069 2069 q069 E069
8 931IA3(] 43S £ 3217 135N S 331N JasN ¥ 921A3Q 435N € 33189 433N 7 931A3 433N T 23183(195N
A A A A A A A
pPreo 9 qreo eyeo pceo 3¢9 qce9 Cr44°]

T peaJyL isild

L

J

4/

J

//\
g079 dWely puodes

/

079 WL 15114

009

BOT9 V BI3we)

/

J

US 9,417,911 B2

Sheet 7 of 10

Aug. 16, 2016

U.S. Patent

6L~
. A\
Z 'Old :
,_:_ | | |]
1 \ K\ i
L ELL viL SLL
L] / \gos
TLL| OLLd mww \\\\\ I S S
T . S
v9L{ S9L{ 99
\ j] \\ ™
€97 197 T9L 092 0zL
qofr eleq
JYOW MOHS
LS°LT 00T/0T v'6€ v XX'SZST9'6/L 0wz
150 0ST/0ST LY 9t XXTPP'IS6L [
pov/
. /IJ
78°85 00E/T¥T T0€ or XX'Z00'€8°SL s
. . XX. . . j
ov've SLY/STY €1t 43 €61°28'SL .
IV ov SLY/Sty 7St 143 XX68T'78'GL eOvs
(sw)
Sdd pausissy/passadold speaJy] eieg aUILL UONN23X3 $3J0D) [e101 SS3JPPY dI ;»r/
J I B B i otz _
557 Syl se/ o€z ST/ J

00

U.S. Patent Aug. 16, 2016 Sheet 8 of 10 US 9,417,911 B2

800

k' B810— CONNECTING TO BACKEND SERVER

B820 RECEIVING DATA BLOCK INCLUDING AT LEAST ONE
~" "\ DATA THREAD, SET RECEIVED DATA BLOCK AS CURRENT
DATA BLOCK

A 4

B830
Y PROCESSING CURRENT DATA BLOCK

B840 -
- SENDING BLOCK RESULT TO BACKEND SERVER

4 B850

ADDITIONAL BLOCK

NO RECEIVED? YES

B860 B880
—

« J
{ STANDBY SETTING ADDITIONAL

Ty T DATA BLOCK AS CURRENT|—
DATA BLOCK

RECEIVING RECEIVING
FIRST JOB THIRD JOB[™ O B870
RESULT RESULT

RECEIVING SECOND
JOB RESULT BASED
ON BLOCK RESULT

" B890

FIG. 8

U.S. Patent Aug. 16, 2016 Sheet 9 of 10 US 9,417,911 B2

900

IDENTIFYING AT LEAST ONE PORTION OF SOURCE DATA

CORRESPONDING TO DATA BLOCK RECEIVED, SOURCE .—--_B910

DATA BEING FORMATTED IN GPU-READABLE FORMAT
FOR PROCESSING BY GPU

4

PROCESSING, WITH AT LEAST ONE GPU, AT LEAST ONE | -—.B920
PORTION OF SOCURCE DATA IN GPU-READABLE FORMAT

RENDERING, WITH AT LEAST ONE GPU, RESULTS OF —~..B930
PROCESSING TO USER INTERFACE

COPYING AND SENDING RESULTS TO BACKEND DEVICE |~~~ B940

FIG. 9

U.S. Patent Aug. 16, 2016 Sheet 10 of 10 US 9,417,911 B2

1000

e PROVIDING SOURCE DATA IN GPU-READABLE FORMAT |- - B1010
FOR DISTRIBUTED PROCESSING BY PLURALITY OF GPUS

SENDING AT LEAST ONE DATA BLOCK CORRESPONDING
TO AT LEAST ONE PORTION OF SOURCE DATA TO EACH
OF PLURALITY OF GPUS

. --B1020

v
RECEIVING RESULTS FROM EACH OF PLURALITY OF
GPUS, EACH RESULT HAS BEEN RENDERED TO USER |.--_R1030
INTERFACE ASSOCIATED WITH EACH OF PLURALITY OF
GPUS

FiG. 10

US 9,417,911 B2

1
SYSTEMS AND METHODS FOR SCALABLE
ASYNCHRONOUS COMPUTING
FRAMEWORK

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application claims priority from Provisional Applica-
tion No. 61/952,055, filed Mar. 12, 2014, incorporated herein
by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments relate generally to large scale distributed
computing frameworks, and more specifically, to scalable
asynchronous computing frameworks using idle cores avail-
able within a network.

2. Background

Various distributed computing frameworks have been
developed to perform certain complex (large-scale) comput-
ing tasks. Such distributed computing frameworks harness
the processing power of a large number of cores to process
complex computing tasks, which can require a tremendous
amount of processing power. In particular, the complex com-
puting tasks can be distributed to a plurality of cores for
processing.

While distributed computing frameworks have been
employed for certain complex computing tasks, the distrib-
uted computing frameworks can encounter capacity issues
when the computing tasks are extremely complex. Given that
a data processing center (e.g., Google Brain) may include a
limited number of cores (e.g., 16,000 cores), the total pro-
cessing power of the distributed computing framework is
limited to the number of cores supported by the data process-
ing center.

SUMMARY OF THE DISCLOSURE

Embodiments described herein relate to distributed data
processing using distributed computing frameworks. The dis-
tributed computing framework may include a backend device
(e.g., a centralized server) provided to partition a computing
task into a plurality of blocks (e.g., smaller concrete tasks).
The backend device may distribute each of the blocks to one
of'a group of user devices via a network. The backend device
may distribute the blocks based on processing power and
network conditions associated with each of the user devices.

The distributed computing frameworks may be imple-
mented to solve numerous computing tasks requiring tremen-
dous processing power. In non-limiting embodiments, the
distributed computing frameworks may be implemented for
3-dimensional space imaging, processing, and displaying
processes. In particular, a target (3-dimensional) space is
partitioned to include a plurality of vertices. Data (e.g., image
data, video data, and/or the like) relating to the target space is
captured by source devices (e.g., cameras). Each image or
frame of a video may include a plurality of pixels, each pixel
may be associated with one of the plurality of vertices. Data
threads (one or more of which may form a block) may be
generated by the backend device for distribution among vari-
ous the user devices, where each data thread may correspond
to data (e.g., pixel data) related to a vertex.

Each user device may compute a data result (e.g., a weight-
ing value) ofthe data thread(s) assigned to the user device and
transmit the data result back to the backend device. The
backend device may determine a job outcome based on the

10

15

20

25

30

35

40

45

50

55

60

65

2

plurality of data results received from the user devices. The
backend device can, then, store the job outcome for future or
real-time displaying (when the job outcome corresponds to
processed image/video) on user devices. In some embodi-
ments, the backend device may not be capable of displaying
the data. The backend device may maintain the processing
scheduling and data locations. Such data may be stored
locally to the backend device or in a remote data storage (e.g.,
in another node within the network).

In some embodiments, the backend device may send the
job outcome to at least some of the user devices for consump-
tion. In other embodiments, the job outcome may not be sent
to the user devices. The entities associated with the backend
device or a third party may consume the job outcome. In these
case, the user devices (or other nodes within the network) may
not receive partial or complete job outcomes. In particular
embodiments, the user devices may display a 3-dimensional
projection (in the form of a video) of the target space based on
the job outcome relating to the colors, textures, frequency
transforms, wavelet transforms, averages, standard devia-
tions of the vertices.

In some embodiments, the count of user devices and the
data processing required to process the source data may be
dynamic (e.g., change over time). Thus, the distributed com-
puting framework may increase in scale as more user devices
become available, vice versa. In various embodiments, when
a threshold minimum number of user devices is not achieved
for processing a given computing task in real time, dedicated
user devices may be added for competing the computing
tasks.

A method for processing data, the method includes, but not
limited to: receiving, by a backend device, source data; par-
titioning, by the backend device, the source data into a plu-
rality of data threads; sending, by the backend device, at least
one ofthe plurality of data threads to each of a plurality ofuser
devices; and determining, by the backend device, a job out-
come for the source data based on a plurality of data thread
results, each of the plurality of data thread results is deter-
mined by one of the plurality of user devices based on the at
least one of the plurality of data threads.

In some embodiments, the source data is video data; and
the data job includes image processing for a frame of the
video data.

According to some embodiments, partitioning of the
source data into the plurality of data threads includes parti-
tioning the frame into a plurality of areas based on metadata
associated with the frame and the plurality of areas, each of
the plurality of areas corresponds to one of the plurality of
data threads.

In some embodiments, the partitioning of the source data
into the plurality of data threads includes partitioning the
source data based on pixels of the source data.

According to various embodiments, the frame is an image
of a target space.

In some embodiments, the target space includes of a plu-
rality of vertices; and each of the plurality of vertices corre-
sponds to a 3-dimensional portion of the target space.

In some embodiments, each of the plurality of data threads
is associated with at least one of the plurality of vertices; and
each of the plurality of data threads corresponds to an area of
the frame.

In some embodiments, each of the data thread results is
determined by determining a weighting value associated with
at least one display characteristics associated with the area of
the frame.

In some embodiments, the display characteristics includes
at least a color associated with the area of the frame.

US 9,417,911 B2

3

In multiple embodiments, the frame captures at least some
of the plurality of vertices.

In various embodiments, the user device displays a 3-di-
mensional projection of the target space based on the job
outcome.

According to some embodiments, determining the job out-
come includes: receiving, by the backend device, the plurality
of data thread results from the plurality of user devices; and
determining the job outcome for the data job based on the
received plurality of data thread results.

In some embodiments, sending the at least one of the
plurality of data threads includes: determining at least one of
processing power and network conditions for each of the
plurality of user devices; and assigning each of the plurality of
user devices at least one of the plurality of data threads based
on at least one of the processing power and the network
conditions.

In some embodiments, the method of claim further com-
prises formatting the source data into graphic processing unit
(GPU)-compatible format, wherein each of the plurality of
data thread results is determined by at least one GPU associ-
ated with each of the plurality of user devices.

In some embodiments, the GPU-compatible format is
associated with shader language.

In various embodiments, the source data is formatted into
at least one of the following elements: geometry, vertices,
textures, normals, and code for the shader language.

In some embodiments, the data thread results are deter-

mined by rendering the data thread results to a display screen
of the user devices; and copying the data thread results ren-
dered to the display screen.
According to some embodiments, the method further com-
prises receiving, by the backend device, the plurality of data
thread results after the plurality of data thread results have
been rendered to the display screen associated with each of
the user devices.

An apparatus for processing data is described with respect
to various embodiments, the apparatus including, but not
limited to: a backend device, the backend device is configured
to: receive source data; partition the source data into a plural-
ity of data threads; send at least one of the plurality of data
threads to each of a plurality of user devices; determine a job
outcome for the source data based on a plurality of data thread
results, each of the plurality of data thread results is deter-
mined by one of the plurality of user devices based on the at
least one of the plurality of data threads; and send the job
outcome to at least one of the plurality of user devices.

Various embodiments are directed to a non-transitory com-
puter-readable storage medium storing program instructions
that, when executed, causes a processor to: receive source
data; partition the source data into a plurality of data threads;
send at least one of the plurality of data threads to each of a
plurality of user devices; determine a job outcome for the
source data based on a plurality of data thread results, each of
the plurality of data thread results is determined by one of the
plurality of user devices based on the at least one of the
plurality of data threads; and send the job outcome to at least
one of the plurality of user devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.11s aschematic block diagram illustrating an example
of a distributed computing framework according to various
embodiments.

FIG. 2 is a process flow chart illustrating an example of a
distributed data processing method according to various
embodiments.

10

25

40

45

4

FIG. 3A is a schematic block diagram illustrating a per-
spective view of a target space according to various embodi-
ments.

FIG. 3B is a schematic block diagram illustrating a frontal
view of the target space according to some embodiments.

FIG. 4A is a schematic block diagram illustrating an
example of a data thread according to various embodiments.

FIG. 4B is a schematic block diagram illustrating an
example of a thread result according to various embodiments.

FIG. 5 is a process flowchart illustrating an example of data
thread assignment method according to various embodi-
ments.

FIG. 6is a schematic block diagram illustrating an example
of data thread assignment and reassignment diagram accord-
ing to various embodiments.

FIG. 7 is a screen illustrating an example of a management
interface in some embodiments.

FIG. 8 is a process flowchart illustrating an example of a
data processing method according to various embodiments.

FIG. 9 is a process flow chart illustrating an example of a
GPU-oriented distributed data processing method according
to various embodiments.

FIG. 10 is a process flow chart illustrating another example
of a GPU-oriented distributed data processing method
according to various embodiments.

DETAILED DESCRIPTION

In the following description of various embodiments, ref-
erence is made to the accompanying drawings which form a
part hereof and in which are shown by way of illustration
specific embodiments in which the invention may be prac-
ticed. It is to be understood that other embodiments may be
utilized, and structural changes may be made without depart-
ing from the scope of the various embodiments disclosed in
the present disclosure.

As referred to herein, a “user core” may be at least one data
processing unit such as, but not limited to, a microprocessor,
a central data processing unit, a graphics processing unit
(GPU), other types of processors, a combination thereof, or
the like. In particular embodiments, a user core may be a GPU
core directly assessable via a browser application without
loading additional software programs or plug-ins. A “user
device” may be any mobile or non-mobile computing device
connected to a network (e.g., any public or private network).
In some embodiments, the user device may access services
provided by a backend device. The services may include, but
not limited to, data transfer services, video streaming ser-
vices, acombination thereof, and/or the like. Each user device
may include one or more user cores for processing tasks of the
user device.

A “data thread” may refer to a unit of data assigned to be
processed by a user core. The data threads may be selected
and assigned to a particular user core (or user device) by the
backend device. In some non-limiting examples, the data
thread may include a portion of an image (e.g., a fraction of a
pixel, pixel(s), macroblock(s), and the like), chunks of a
video, abstract data points arranged in video-like streams,
metadata corresponding therewith, and/or the like. A “data
block” may be a unit of data including at least one data thread.
A “data job” may be any coherent computing tasks that can be
segmented into a plurality of data threads/blocks for process-
ing by the user cores. For example, a data job may be a
processing task for processing at least one pixel, macroblock,
frame of video data, 3-dimensional projections, filtering
images, object identification for images, and/or the like.

US 9,417,911 B2

5

As shown in a non-limiting example, a data job may be
processing an image having a size of 1920p by 1080p. A data
block may be an area on the image having a size of 128p by
128p. And within the data block, each pixel may be associated
with a data thread. Thus, the data job of processing the image
may be divided into 125 processing blocks, where each of the
data blocks may be processed in a single frame on a single
user device in the manner described (Each user device may
process anywhere between 5 frames to more than 120 frames
per second of any data available in any processing task it is
subscribed to). Subscription to processing data jobs may be
provided (e.g., hardcoded) into a website, which may include
many user devices being connected to it (a lot of web traffic).

Embodiments of the current disclosure relate to systems
and methods for enabling scalable distributed computing
frameworks using web cores. Breakthroughs in bandwidth
and web technologies allow asynchronous parallel process-
ing framework scalable across user cores within a network.
The user cores may be components of user devices, which
may be operated by users to access services (e.g., web ser-
vices such as video streaming services) provided within the
network. Therefore, the processing power of the distributed
computing framework increases with the number of user
devices connected to the network (using the services provided
within the network). In various embodiments, the number of
user cores may be in the millions.

Implementations of the distributed computing framework
include, but not limited to, large-scale image processing, web
rendering, 3-dimensional WebGL rendering, deep learning
neural network, image recognition, image filtering, and other
suitable users described herein. In specific implementations,
the distributed computing framework as described herein
may be capable of processing data (e.g., video/image data) in
real time, such as to provide real-time services (e.g., stream-
ing services). For example, the user device (e.g., through the
user cores) may be configured to process a portion of data
used to provide the real-time streaming services. The pro-
cessed data (e.g., the job outcome) may be received by the
user device for providing the real-time services as described.
One of ordinary skill in the art appreciates that the job out-
come may not be required to be sent to the user device. The
user device may be compensated in other ways such as, but
not limited to, monetary compensation, services, a combina-
tion thereof, and/or the like.

In various embodiments, the processing power of each user
device depends on the total processing power of the user
core(s), the current processing power of the user core(s),
network bandwidth status, a combination thereof, and/or the
like. In typical embodiments, the distributed computing
frameworks may require a small portion of the user core’s
processing power (e.g., the total processing power or the
current processing power) such that the distributed processes
assigned to the particular user device does not interfere sub-
stantially with the ordinary processes of the user core. In often
cases, the users of the user devices would not be able to notice
that the distributed processes are executed on the user
devices.

FIG.11s aschematic block diagram illustrating an example
of'a distributed computing framework 100 according to vari-
ous embodiments. Referring to FIG. 1, the distributed com-
puting framework 100 may include at least a backend device
110, a data source 120, a plurality of user devices (e.g., user
device A 140a, user device B 1405, . . ., user device N 140z,
and the like).

Insome embodiments, a network 130 may allow data trans-
fer between the backend device 110 and the user devices
140a-140%. In further embodiments, the network 130 may

10

15

20

25

30

35

40

45

50

55

60

65

6

also allow data transfer between the data source 120 and the
backend device 110. In still further embodiments, the net-
work 130 may enable data transfer between the database 170
and the backend device 110. The user devices 140a-1407 may
be connected to each other through the network 130. The
network 130 may be a wide area communication network,
such as, but not limited to, the Internet, or one or more
Intranets, local area networks (LANs), ethernet networks,
metropolitan area networks (MANs), a wide area network
(WAN), combinations thereof, and/or the like. In particular
embodiments, the network 130 may represent one or more
secure networks configured with suitable security features,
such as, but not limited to firewalls, encryption, or other
software or hardware configurations that inhibits access to
network communications by unauthorized personnel or enti-
ties. The data transmittable over the network 130 may be
encrypted and decrypted within shader language on user
cores 150 ofthe user devices 140a-140r using per frame keys,
further securing the data.

The data source 120 may be connected to the user devices
140a-1407 (e.g., via the network 130 or otherwise) for pro-
viding source data to be processed by the user devices 140a-
140n of the distributed computing framework 100. For
example, the data source 120 may include any suitable
sources or devices for outputting unprocessed data such as,
but not limited to, image/video data, application data, and/or
the like. In particular embodiments, the data source 120 may
include at least one camera for capturing video, image, and/or
audio data. Other data sources include, but are not limited to,
currency exchange rates, weather sensor data, genetic mate-
rial sequencing, a combination thereof, and/or the like. The
data source 120 may include a database/server for storing
captured output data (e.g., the actual source data).

In some embodiments, the data sources 120 may be con-
nected to the backend device 110 (e.g., via the network). The
backend device 110 may generate metadata based on the
actual data outputted by the data source 120 (and stored in the
database/server associated with the data source 120). The
backend device 110 may transmit metadata (e.g., indicating
particularly the partitioned data blocks/treads) to the user
devices 140a-1407n. The user devices 140a-1407 may retrieve
the actual data from the data source 120 (e.g., from the server/
database associated with the data source) for processing as
described herein.

In other embodiments, the data source 120 may include at
least one of the user devices 140a-1407 having any suitable
types of image/video/audio capturing capabilities (e.g.,
smartphone cameras). In such embodiments, the at least one
of the user devices 140a-1407 may consume its own output
for processing in the manner described without retrieving the
actual data from the remote data source 120. Whereas the at
least one of the user devices 140a-140» does not consume the
whole output, the backend device 110 may generate metadata
such that other user devices may retrieve at least a portion of
the output from the at least one of the user devices 140a-140n
for processing.

The backend device 110 may include at least one processor
111, memory 112 operatively coupled to the processor 111, at
least one network device 113, at least one user interface 114,
and/or the like. In some embodiments, the backend device
110 may include a desktop computer, mainframe computer,
laptop computer, pad device, smart phone device or the like,
configured with hardware and software to perform operations
described herein.

For example, the backend device 110 may include typical
desktop PC or Apple™ computer devices, having suitable
processing capabilities, memory, user interface (e.g., display

US 9,417,911 B2

7

and input) capabilities, and communication capabilities,
when configured with suitable application software (or other
software) to perform operations described herein. Platforms
suitable for implementation include Amazon/Debian Linux,
HTML (e.g., HTMLS), suitable browsers without plug-ins
(such as java or flash), or the like. Thus, particular embodi-
ments may be implemented, using processor devices that are
often already present in many business and organization envi-
ronments, by configuring such devices with suitable software
processes described herein. Accordingly, such embodiments
may be implemented with minimal additional hardware
costs. However, other embodiments of the backend device
110 may relate to systems and process that are implemented
with dedicated device hardware specifically configured for
performing operations described herein.

The processor 111 may include any suitable data process-
ing device, such as a general-purpose processor (e.g., a micro-
processor), or executing the functions of the backend device
110 as described. In the alternative, the processor 111 may be
any conventional processor, controller, microcontroller, or
state machine. The processor 111 may also be implemented
as a combination of computing devices, e.g., a combination of
a DSP and a microprocessor, a plurality of microprocessors,
a GPU, at least one microprocessors in conjunction with a
DSP core, or any other such configuration.

The memory 112 may be operatively coupled to the pro-
cessor 112 and may include any suitable device for storing
software and data for controlling and use by the processor 111
to perform operations and functions described herein, includ-
ing, but not limited to, random access memory (RAM), read
only memory (ROM), floppy disks, hard disks, dongles or
other recomp sensor board (RSB) connected memory
devices, or the like.

The network device 113 may be configured for communi-
cation over the network 130. The network device 113 may
include interface software, hardware, or combinations
thereof, for communication over the network 130. The net-
work device 113 may include hardware such as network
modems, wireless receiver or transceiver electronics, and/or
software that provide wired or wireless communication link
with the network 130 (or with a network-connected device).
In particular embodiments, the network device 113 may be
coupled to the processor 111 for providing communication
functions. The network device 113 may provide telephone
and other communications in accordance with typical indus-
try standards, such as, but not limited to code division mul-
tiple access (CDMA), time division multiple access
(TDMA), frequency division multiple access (FDMA), long
term evolution (LTE), wireless fidelity (WiFi), frequency
modulation (FM), Bluetooth (BT), near field communication
(NFC), and the like.

In particular embodiments, the user interface 114 of the
backend device 110 may include at least one display device.
The display device may include any suitable device that pro-
vides a human-perceptible visible signal, audible signal, tac-
tile signal, or any combination thereof, including, but not
limited to a touchscreen, LCD, LED, CRT, plasma, or other
suitable display screen, audio speaker or other audio gener-
ating device, combinations thereof, or the like.

In some embodiments, the user interface 114 of the back-
end device 110 may include at least one user input device that
provides an interface for designated personnel using the back-
end device 110. The user input device may include any suit-
able device that receives input from a user including, but not
limited to one or more manual operator (such as, but not
limited to a switch, button, touchscreen, knob, slider, key-

10

15

20

25

30

35

40

45

50

55

60

65

8

board, mouse, or the like), microphone, camera, image sen-
sor, any types of remote connection control, or the like.

Still referring to FIG. 1, in addition to (or as an alternative
to) the memory 112, the backend device 110 may be opera-
tively coupled to the at least one database 170. In some
embodiments, the database 170 may be connected to the
backend device 110 through the network 130. In other
embodiments, the database 170 may be connected to the
backend device 110 in other suitable manners not through the
network 130. The database 170 may be capable of storing a
greater amount of information and provide a greater level of
security against unauthorized access to stored information
than the memory 112 in the backend device 110. The database
170 may include any suitable electronic storage device or
system, including, but not limited to random access memory
RAM, read only memory ROM, floppy disks, hard disks,
dongles or other RSB connected memory devices, or the like.

In particular embodiments, the database 170 may be a
NoSql database maintained by a redis server to control alert-
ing user devices 140a-140r of new data blocks/threads and
prioritizing data blocks/threads. The user devices 140a-1407n
may be capable to interact with the redis server to store and
access data in an asynchronous manner (e.g., no bottlenecks
given metadata is being maintained by the database 170 and/
or the memory 112; the actual data may be stored in the data
sources 120). The algorithms for such access may be struc-
tured such that no data hazards are present from overlaps.
Atomic instructions may be included to avoid collision haz-
ards.

The database 170 and/or the memory 112 may be config-
ured to store source data (e.g., unprocessed data) from the
data source 120. In some embodiments, the source data may
be stored in either the database 170 or the memory 112. In
other embodiments, at least a portion of the source data may
be stored in one of the database 170 and the memory 112,
while a separate portion of the source data may be stored in
another one of the database 170 or the memory 112.

In further embodiments, the database 170 and/or the
memory 112 may be configured to store segmented data
threads to be send to the user devices 140a-1407 through the
network 130. The processor 111 may partition the source data
(e.g., data job) into a plurality of data threads. Each data
thread may be sent to one of the user devices 140a-1407 for
processing. In various embodiments, the database 170 and/or
the memory 112 may store only the metadata required to
identify the source data. The source data itself may be hosted
on a content delivery network (CDN) or another server/data-
base residing within the data source 120. The user devices
140a-1402 may pull (e.g., request from the backend device
110) data blocks/threads as they become available in the
manner described. This may be advantageous due to unequal
processing time associated with each user core 150 of each of
theuser devices 140a-140%. Alternatively, the backend device
110 may push the data blocks/threads to the user devices
140a-1407%. Once partitioned, the data threads may be stored
and indexed within the database 170 and/or the memory 112
until the data threads are processed by one of the user devices
140a-140n. Given that a user device referred to generally as
the user device 140z may be unable to process the data thread
for various reasons, the database 170 and/or the memory 112
may store an assigned but not yet processed data thread until
the data thread has been processed. In still further embodi-
ments, the database 170 and/or the memory 112 may store
processed data thread results received from the user devices.

In some embodiments, data threads and/or data blocks may
be stored as lists of data on the backend device 110, which
may take form of a NoSql server with a redis server main-

US 9,417,911 B2

9

taining asynchronous communication between the user
devices and the NoSql server. NoSql server may be used in
some embodiments by virtue of its ability to allow fast access
to flattened data structures. The backend device 110 (or at
least a portion thereof) may be set up over a CDN, or data
contained within the backend device 110 or the associated
database 170 may be copied to other data centers spread
around the world to eliminate any single points of failure. As
such, persistent memory may be achieved for data processing
even if a single node server containing data becomes offline.
In various embodiments, each data thread/block may include
only the minimum indexing information (e.g., metadata)
needed for the user devices 140a4-140x to retrieve or other-
wise obtain the correct data to be processed and/or output
data. In addition, any other metadata/parameter necessary for
processing the data thread (e.g., scripts, instructions, param-
eters, algorithms, location to store output data, a combination
thereof, and/or the like) may be included in each data thread/
block. Accordingly, the user devices 140a-140#, upon receiv-
ing the data blocks/threads (which include the metadata
pointing the location of the actual data), may retrieve or
otherwise access the actual data (located at a server/database/
network other than the backend device 110, for example, at
the data sources 120) based on the metadata in the data
blocks/threads.

Each of the user devices 140a-140# (e.g., as depicted with
respect to the user device n 140z) may include at least one
processing unit 160, user device memory 161 operatively
coupled to the processing unit 160, user network device 163,
user device interface 164, and user core 150. The user devices
140a-1407 may be dedicated or general user devices con-
nected to the network 130. In the event that a number of the
general user devices do not meet a predetermined threshold
for processing a certain computing task, additional dedicated
user devices may be added (to meet the predetermined thresh-
old, or beyond).

The processing unit 160 may be configured to execute
general functions of the user devices 140a-140%. The pro-
cessing unit 160 may be any suitable data processing device,
such as a general-purpose processor, microprocessor, GPU,
or the like. In the alternative, the processing unit 160 may be
any conventional processor, controller, microcontroller, or
state machine. The processing unit 160 may also be imple-
mented as a combination of computing devices, e.g., a com-
bination of a DSP and a microprocessor, a plurality of micro-
processors, at least one microprocessors in conjunction with
a DSP core, or any other such configuration. In particular
embodiments, the processing unit 160 may refer to the GPU
of'the user devices 140a-140%. The GPU may be connected to
the network 130 (e.g., the internet) via a browser without the
need of plug-ins (e.g., java or flash) using simply HTMLS, as
enabled by improved network capabilities (e.g., network
speed). As such, the processes of the processing unit 160 may
not be noticeable to the user of each of the user devices
140a-1407.

The user device memory 161 may be operatively coupled
to the processing unit 160 and may include any suitable
device for storing software and data for controlling and use by
the processing unit 160 to perform operations and functions
described herein. The user device memory 161 may be a
RAM, ROM, floppy disks, hard disks, dongles or other RSB
connected memory devices, or the like.

The user network device 163 may include interface soft-
ware, hardware, or combinations thereof, for communication
over the network 130. The user network device 163 may
include network modem, wireless receiver or transceiver
electronics, and/or software that provide wired or wireless

5

10

20

25

30

35

40

45

50

55

60

65

10

communication link with the network 130 (or with a network-
connected device). In particular embodiments, the user net-
work device 163 may be coupled to the processing unit 160
for providing communication functions. The user network
device 163 may provide communications in accordance with
typical industry standards, such as, but not limited to, CDMA,
TDMA, FDMA, LTE, WiFi, FM, BT, NFC, and/or the like. In
some embodiments, the network 130 may be the internet, as
the user devices 140a-1407 may be spread out geographically
using optimal bandwidth. In other embodiments, the network
130 may be a limited local network. The local network may be
related to other private networks or the internet in general.

In further embodiments, each of the user devices 140a-
140» may include, additionally, plug-ins and hardware to
accelerate GPU (e.g., the user core 150) processing. The
additional plug-ins may provide access to lower level opti-
mized functions within the user devices 140a-1407. The addi-
tional hardware may boost the performance for the user core
150. The user devices 140a-140% may also be head nodes of
a data center, which processes the data blocks/threads sent to
the user devices 140a-1407 and relays the data blocks/threads
back to the user devices 140a-140n to relay back to the
backend device 110.

In particular embodiments, the user device interface 164 of
the user devices 1404-140z may include at least one display
device for displaying information (e.g., text and graphics) to
the users. The display device may include any suitable device
that provides a human-perceptible visible signal, audible sig-
nal, tactile signal, or any combination thereof, including, but
not limited to a touchscreen, LCD, LED, CRT, plasma, or
other suitable display screen, audio speaker or other audio
generating device, combinations thereof, or the like.

In some embodiments, the user device interface 164 of the
user devices 140a-1407 may include at least one user input
device that provides an interface for accepting inputs of the
users. The user input device may include any suitable device
that receives input from a user including, but not limited to
one or more manual operator (such as, but not limited to a
switch, button, touchscreen, knob, slider, keyboard, mouse,
or the like), microphone, camera, image sensor, and/or the
like.

The user core 150 may be configured to execute data thread
processing functions of the user devices 140a-1407 as
described. The user core 150 may be the same as the process-
ing unit 160 in some embodiments. In other embodiments, the
user core 150 may be a processing device separate from the
processing unit 160. The user core 150 may be any suitable
data processing device for processing data threads, such as at
least one general-purpose processor, microprocessor, GPU,
or the like. In the alternative, the user core 150 may be any
conventional processor, controller, microcontroller, or state
machine. The user core 150 may also be implemented as a
combination of computing devices, e.g., a combination of a
DSP and a microprocessor, a plurality of microprocessors, at
least one microprocessors in conjunction with a DSP core, or
any other such configuration.

In particular embodiments, each of the user devices 140a-
1407 may be any wired or wireless computing systems or
devices. In some embodiments, the user devices 140a-140n
may be a desktop computer, mainframe computer, laptop
computer, pad device, or the like, configured with hardware
and software to perform operations described herein. For
example, each of the user devices 140a-140» may include
typical desktop PC or Apple™ computer devices, having
suitable processing capabilities, memory, user interface (e.g.,
display and input) capabilities, and communication capabili-
ties, when configured with suitable application software (or

US 9,417,911 B2

11

other software) to perform operations described herein. In
other embodiments, the user devices 140a-1407. may include
amobile smart phone (such as, but not limited to an iPhone™,
an Android™ phone, or the like) or other mobile phone with
suitable processing capabilities. Typical modern mobile
phone devices include telephone communication electronics
as well as some processor electronics, one or more display
devices and a keypad and/or other user input device, such as,
but not limited to described above. Particular embodiments
employ mobile phones, commonly referred to as smart
phones, that have relatively advanced processing, input and
display capabilities in addition to telephone communication
capabilities. However, the user devices 140a-140z, in further
embodiments of the present invention, may include any suit-
able type of mobile phone and/or other type of portable elec-
tronic communication device, such as, but not limited to, an
electronic smart pad device (such as, but not limited to an
iPad™), a portable laptop computer, or the like. Mobile GPU
processing through native libraries as well as non-mobile
GPU may be implemented to communicate on the same asyn-
chronous network 130.

In some embodiments, the functions performed by the user
devices 140a-140n can be implemented with minimal addi-
tional hardware costs by utilizing existing hardware. In other
embodiments, systems and processes described herein can be
implemented with dedicated device hardware specifically
configured for performing operations described herein. Hard-
ware and/or software for the functions may be incorporated in
the user devices 140a-1407 during manufacture of the user
devices 140a-140n, for example, as part of the original manu-
facturer’s configuration. Such hardware and/or software may
also be added to the user devices 140a-140z, after original
manufacture (e.g., installing one or more software applica-
tions onto the user devices 140a-1407).

FIG. 2 is a process flow chart illustrating an example of a
distributed data processing method 200 according to various
embodiments. Referring to FIGS. 1-2, the distributed data
processing method 200 may be implemented with the distrib-
uted computing framework 100. In a non-limiting example,
the distributed data processing method 200 may be imple-
mented for 3-dimensional real-time streaming systems and
methods implementing display threshold techniques
described herein.

In general terms, such 3-dimensional real-time streaming
systems and methods may refer to the backend device 110
being configured to partition the 3-dimensional graphic con-
struction process into smaller chunks (e.g., data threads) for
processing by the plurality user devices 140a-140% (e.g., by
the user cores 150). The backend device 110 may then receive
the results (e.g., data thread results) for each of the smaller
chunks from the user devices 140a-1407 and compute the
3-dimensional re-construction data from the data thread
results. Once computed, 3-dimensional re-construction data
may be transmitted to each of the user devices 140a-140% for
rendering 3-dimensional videos. It should be noted by one of
ordinary skill in the art that the distributed data processing
method 200 is applicable to other types of image data pro-
cessing, and data processing in general.

First at block B210, the backend device 110 may receive
source data from the data source 120 relating to a data job. In
some embodiments, the source data may be any unprocessed
data such as, but not limited to, image data, video data, audio
date, application data, combination thereof, and/or the like. A
data job may define a particular computing task definable
within the source data. In a non-limiting example, whereas

10

20

25

35

40

45

60

12

the source data is graphics (e.g., video) data, a data job may
delineate the portion of the source data corresponding to a
frame.

Next at block B220, the backend device 110 may be con-
figured to partition the source data (e.g., each data job) into a
plurality of data threads. In other words, the source data may
be divided into a plurality of data jobs, and each data job may
be partitioned into a plurality of data threads. Such divisions
of the source data may serve to break down a complex com-
puting task into smaller segments to be processed by the
plurality of user cores 150, thus providing finer granularity
and greater processing power. In particular embodiments, a
unit of source data may be stored in the backend device 110,
the database 170, or a third-party storage device in or not in
the network 130. The partitioning of the unit of source data
may include obtaining location indicators (e.g., URLs) for
each discrete piece of the unit of source data. The discrete
pieces (or the unit of source data itself) may not be in the data
threads. However, the location indicators may be stored or
transmitted as data threads. In other words, the partitioning
concerns metadata instead of data in some embodiments. In
other embodiments, the discrete pieces themselves are stored
and transmitted as the data threads.

In a non-limiting example, a video stream (the source data)
may be received as separate data jobs (e.g., separate frames,
each frame is a data job). Each frame may further be divided
based on vertices (e.g., data threads) for processing. A vertex
may be a predetermined point within a target space (e.g., a
sport stadium, and the like), where each vertex may be asso-
ciated with a definable volume within the target space. Each
vertex may correspond to portion of a pixel, pixel(s), or mac-
roblock(s) as captured by a digital camera (the data source
120). In various embodiments, a data thread may be a unit of
video image/video data with respect to one vertex as captured
by one camera at a single frame.

Next at block B230, the backend device 110 may store the
plurality of data threads in the database 170, the memory 112,
a combination thereof, and/or the like. Given that there may
not be as many user cores 150 available at a given time to
process each data thread, all data threads may be stored. Some
data threads may be processed immediate by assigning to
available user cores 150 for processing. Other unassigned
data threads may be stored in the database 170 or the memory
112 until a new user core 150 becomes available (e.g., by
completing data thread processing of a previous data thread or
by becoming connected to the network 130). All data threads
may be stored as metadata, including input data location,
scripts, instructions, parameters, algorithms, location to store
output data, flags need to be set a combination thereof, and/or
the like. The metadata locations may be removed as processed
and outputs are stored, to optimize the periodization of new
unprocessed data blocks/threads.

At block B240, the backend device 110 may be configured
to send one of the plurality of data threads to each available
user device 1407 within the network 130, where each avail-
able user device 140x may include a user core 150. In various
embodiments, the backend device 110 may identify the user
devices 140a-140n within the network 130 in the manner
described. The user devices 140z may be deemed available
when the user device 1407 has a free user core 150 to process
the data threads. Data blocks/threads may be pushed down
from the backend device 110 or pulled by the user devices
1404-140n from the backend device 110. The backend device
110 may periodically send the data blocks/threads to the user
devices 140a-1407 in a push, where each user device may
receive and process the sent data blocks/threads when that
user device is available. Alternatively, the user device may

US 9,417,911 B2

13

store the data blocks/threads for future processing. In other
embodiments, each of the user devices 140a-1407 may trans-
mit a request to the backend device 110 (when data process-
ing is complete) to receive a new data block/thread to process,
in a pull. Pulling data blocks/threads by the user devices
140a-1407 can be cost-efficient, given that the user devices
140a-1407 may access metadata from the backend device 110
asynchronously, and that each of the user devices 140a-140x
may process at different rates. The data sent to be backend
devices 140a-1407 may be based on a prioritized list of data
blocks/threads in the manner described.

The backend device 110 may assign each available user
device 140% a data thread based on the total processing power
of'the user core 150, the current processing power of the user
core 150, network bandwidth status, a combination thereof,
and/or the like. In some embodiments, the data thread may
include embedded scripts or instructions for processing the
data threads sent with the data thread to the user device. The
data thread may include metadata/pointers of the scripts or
instructions may be included in the data thread, such that the
actual scripts or instructions may be stored in another server/
database other than the backend device 110 and the database
170. The user devices 140a-140n may retrieve or otherwise
access the actual scripts or instructions from the another
server/database based on the location pointed by the metadata
of the data thread. The scripts or instructions may be data
thread-specific. In other embodiments, the instructions may
be pre-stored in the user device memory 161 of the user
devices 140a-140%. In some cases, a decryption key may also
be sent with the data blocks/threads to decrypt the corre-
sponding data blocks/threads with user core 150 (GPU)
memory. The user core 150 may then process the data blocks/
threads with the user core 150 and re-encrypt the block results
for private or DRM-capable processing.

Next at block B250, the backend device 110 may receive
data thread results from the available user devices 140a-140n
via the network 130. Each data thread result may correspond
to a sent data thread. After the available user devices 140a-
140 process the sent data threads (e.g., determining the data
thread results), the data thread results may be sent to the
backend device 110 by the user devices 140a-140%. In par-
ticular embodiments, one of the user devices 140a-1407 may
process the image/video data related to a particular vertex for
a data thread result (e.g., a weighting value) corresponding to
that vertex in the manner described.

Next at block B260, the backend device 110 may determine
a job outcome for each data job based on the received data
thread results. For example, the backend device 110 may store
all data thread results corresponding to data threads making
up a data job as they are received. Given network character-
istics and processing power associated with each user core
150, data thread results making up a data job may be received
at different times. Once all data thread results are received, the
backend device 110 may determine the job outcome for the
entire data job. In other embodiments, the user devices 140a-
1407 may determine the job outcome in pieces when a large
output is anticipated. The pieces of the job outcome may then
be compacted into manageable streams. In specific embodi-
ments, weighting values for a vertex (e.g., as determined from
various cameras and various frames) may be gathered and
computed to determine display confidence level with respect
to the color corresponding to the particular vertex.

Next at block B270, the backend device 110 may send the
job outcome to the user devices 140a-1407 for consumption.
In particular embodiments, the user devices 140a-140% may
receive the weighting factors (e.g., the job outcomes) with
respect to the color corresponding to a particular vertex in the

10

15

20

25

30

35

40

45

50

55

60

65

14

target space and store them within the user device memory
161. The user devices 140a-140» may reconstruct the target
space in 3-dimensional reconstruction processes based on the
color associated with each vertex with the processing unit 160
and/or the user core 150. Accordingly, the user devices 140a-
140x participate in the graphical processing stage by contrib-
uting at least a portion of their processing power (through user
cores 150) and consuming the end product of the graphical
processing.

FIG. 3A is a schematic block diagram illustrating a per-
spective view of a target space 300 according to various
embodiments. FIG. 3B is a schematic block diagram illus-
trating a frontal view of the target space 300. Referring to
FIGS. 1-3B, the target space 300 may be partitioned into a
plurality of volumes 310a-310% (e.g., a first volume 3104, a
second volume 3105, . . . , an eight volume 310/). Each of the
volumes may be associated with a vertex. For example, the
first volume 310a may be associated with a first vertex 320a,
the second volume 3105 may be associated with a second
vertex 3206, . . . , the eight volume 310/ may be associated
with an eighth vertex 320/%. Each of the volumes 3104-310/
may be of any suitable shape such as, but not limited to
cuboids, cubes, and the like.

The volumes 310a-310/ and/or the vertices 320a-320/
may be predetermined given that the dimensions for the target
space 300 may be known. In some embodiments, for a target
space 300 of 60' by 30' by 10', there may be 6,000,000 vertices
such as, but not limited to, the vertices 320a-320/. A larger
number of vertices in a given target space 300 may allow fine
detailing of the target space 300.

Each of the vertices 320a-320/ may correspond to a por-
tion of a pixel (e.g., Yis, ¥, ¥4, V2, or the like), pixel(s),
macroblock(s), or the like when projected and displayed in a
3-dimensional context. For example, the user device interface
164 of each of the user devices 140a-1402 may be configured
to display 3-dimensional projections of the target space 300
based on the vertices 320a-320/. Each vertex may be associ-
ated with display characteristics such as, but not limited to,
colors, textures, frequency transforms, wavelet transforms,
averages, standard deviations. Various embodiments
described herein may refer to color as an exemplary display
characteristic. One of ordinary skill in the art would know that
other display characteristics as stated may also be imple-
mented in a similar manner.

Each display characteristics may be determined based on
multi-camera output. For example, multiple cameras may be
positioned around the target space 300. Given that the camera
pose (position and orientation) may be known in advance, the
vertices 320a-320/ captured by each camera may be deter-
mined. For example, a camera capturing the frontal view of
the target space 300 may capture the frontal vertices (e.g., the
first vertex 320a, the second vertex 3205, the third vertex
320c¢, and the fourth vertex 3204). Additional cameras may
capture the back, top, bottom, and/or side views of the target
space 300 along the dimensions of the target space 300. Thus,
a single vertex may be captured by multiple cameras. In
particular, the cameras may capture display characteristics
associated with each vertex. One display characteristic is the
color associated with each vertex.

For each vertex defined within the target space 300, a
weighting value may be determined for each possible color
associated with the vertex (and the associated volume). Each
time a camera captures a vertex (e.g., in an image or a frame
of a video) in a first color, the weighting value for the first
color will increase by one. Similarly, each time a camera
captures a vertex ina second color, the weighting value for the
second color will increase by one. Thus, the weighting values

US 9,417,911 B2

15

are determined (i.e., determining the color for the vertex as
captured each of the plurality of cameras capable of capturing
the vertex) for each color associated with the vertex. Higher
weighting values for a particular color indicates that the ver-
tex has been captured in that particular color by a larger
number of cameras, increasing the confidence level that the
vertex is associated with the particular color at a given
moment in time. In some embodiments, whereas the weight-
ing value for a color (e.g., the first color) exceeds a threshold
value, then the vertex may be determined to be associated
with the first color. In some embodiments, the user devices
140a-1407 may display the video projections of the target
space 300 based on the color associated with each vertex. In
further embodiments, additional devices that did not contrib-
ute to the data processing (e.g., not connected to the network
130 at the time of processing) may also benefit from the
processes of the user devices 140a-140r and the backend
device 110, and display the video projections of the target
space 300 based on the color associated with each vertex.

Displaying the video projections of the target space 300
may be achieved by streaming the job outcome to a CDN in
the form of depth videos, which scan and represent the target
space 300 from the outside-in. Scanning may involve taking
each pixel of the output video and projecting it into the space
from each 4-5 surface of a cubic region of interest. The
projected vertex value in X, y, z may be re-encoded into R, G,
B to stream to the user devices. User devices may then re-
interpret the data into a 3-dimensional model in real time for
viewing in different perspectives, angle, and distance.

In another approach, standard deviation of all colors may
be determined. The average of the colors may be chosen if the
standard deviation is below a predetermined threshold. On the
other hand, whereas the standard deviation of all potential
colors is above a predetermined threshold, it means that the
vertex projects to different colors in a substantial number of
cameras (e.g., data source 120). Thus, it is likely that the
vertex may the interior of a volume in the target space 300
rather than a vertex associated with a color.

The backend device 110 may receive the source data from
the cameras surrounding the target space 300. Next, the back-
end device 110 may partition the source data into a plurality
of'data threads based on the vertices associated with the target
space 300. For example, a portion of a pixel, pixel(s), mac-
roblock(s) of the source data corresponding to a given vertex
may beidentified (e.g., with respect to block B220) and stored
together with the vertex (e.g., with respect to block B230).
Also stored together with the vertex (as sometimes identified
by a unique vertex ID) are colors identified with the vertex
and the corresponding weighting values.

FIG. 4A is a schematic block diagram illustrating an
example of a data thread 400 according to various embodi-
ments. The data thread 400 may be any data thread referred to
herein. Generally, a data thread may include metadata (e.g.,
source data location, specific identification of portions of the
source data, other suitable processing parameters, and the
like) corresponding to the source data, which is stored sepa-
rately from the metadata. The actual source data may be
stored in the data sources 120. Metadata may be of lesser size
than actual source data itself, thus is more cost-effective to be
moved from the backend device 110 to the user devices 140a-
140n. The user devices 140a-140n themselves may retrieve or
otherwise access the actual source data for processing based
on the metadata stored in the data thread. Alternatively, the
data thread may include the source data itself.

Specifically, FIG. 4A illustrates the data thread 400 of an
image processing context, where the source data may be
images, video frames, a combination thereof, and/or the like.

10

15

20

25

30

35

40

45

50

55

60

65

16

Referring to FIGS. 1-4A, the data thread 400 may be gener-
ated by the backend device 110 (by partitioning the source
data in the manner described), stored in the database 170
and/or the memory 112, In some embodiments, the data
thread 400 may include at least a location 410, size 420,
image data URL 430, and vertex ID 440. The vertex ID 440
may identify a specific vertex (e.g., the first vertex 320q)
within the target space 300.

In various embodiments, the image data URL 430 may be
an address from which the user devices 140a-140r may
access or retrieve a portion of the source data (e.g., an image,
frame, and/or the like) corresponding to the data job. In par-
ticular embodiments, the image data URL 430 may be a
uniform resource locator address for the image/frame (e.g.,
the data job) as captured by a camera. The image/frame may
be stored as the source data on the database 170, the memory
112, or another server. The image/frame may capture a plu-
rality of vertices of the target space 300, including the vertex
associated with the vertex ID 440. The location 410 may be a
position in the image/frame (as contained in the image data
URL 430) associated with the vertex associated with the
vertex ID 440. The location 410 may be a fraction of a pixel
or at least one pixel. The size 420 refers to the size of the
portion (e.g., an area) of the image/fraction associated with
the vertex. In other words, the size 420 dictates the area
around the location 410 that is associated with the vertex. The
size 420 may be Vis, Y5, V4, 12, 1, 2, 3, 4 pixels (extending in
any direction of the image/frame from the location 410),
and/or the like. In some embodiments, the size 420 may
correspond to the volume associated with each vertex. For
example, the larger the volume is, the larger it would appear
on the image.

By storing the entire image remotely and sending only
sufficient identification information (e.g., the location 410,
the size 420, and the image data URL 430) to the user devices
140a-1407 for performing data processing, bandwidth may
be conserved given that the data size for transmitting image/
frame data may be greater than the data size for transmitting
the identification information. In other embodiments, the data
thread 400 may include the particular portion of the image/
frame (as would be otherwise identified by the location 410,
the size 420, and the image URL 430) and the vertex 1D 440.

FIG. 4B is a schematic block diagram illustrating an
example of a thread result 460 according to various embodi-
ments. Referring to FIGS. 1-4B, the thread result 460 may be
generated by each of the user devices 140a-1407 and trans-
mitted to the backend device 110. The thread result 460 may
include at least a data thread result 470 and the vertex ID 440.
The data thread result 470 may be the processed results of the
data thread 400 as described. In particular embodiments, the
data thread result 470 may include a color or an indicator
indicating the color associated with the area of the image/
frame. For example, the area may be identified by the location
410 and the size 420 of the data thread 400. The image/frame
may be contained within the image data URL 430. The source
data may be located within the network 130 or anywhere on
the internet.

When each of the user devices 140a-140x receives the data
thread 400, each of the user devices 140a-140r may retrieve
the area of the image/frame associated with the vertex by
accessing the image data URL 430 and locating the area with
the location 410 and the size 420 as described. Each of the
user devices 140a-1407 may then determine display charac-
teristics (e.g., color) associated with the area. The color may
be transmitted together with the vertex 1D 440 back to the
backend device 110 in the thread result 460. The backend
device 110 may then index the data thread results 470 accord-

US 9,417,911 B2

17
ing to the vertex ID 440. The backend device 110 may
increase the weighting value of the color set forth in the data
thread result 470 or the vertex associated with the vertex ID
440.

In various embodiments, a single data thread 400 may be
sent to a user device 140z at a time. Another data thread 400
may be sent to the user device 140 when the previous data
thread 400 has been processed (e.g., the data thread result 460
has been received by the backend device 110). In other
embodiments, a block (i.e., a unit of data including a plurality
of'data threads such as the data thread 400) may be sent to the
user devices 140a-1407 for distributed processing. Thus, time
may be conserved when multiple data threads 400 are trans-
mitted to the user devices 140a-140n.

FIG. 5 is a process flowchart illustrating an example of data
thread assignment method 500 according to various embodi-
ments. In various embodiments, the data thread assignment
method 500 may correspond to block B240 of the distributed
data processing method 200 of FIG. 2.

Now referring to FIGS. 1-5, first at block B510, the back-
end device 110 may identify a plurality of available user
devices (e.g., the user devices 140a-1407). In some embodi-
ments, the available user devices may be identified when the
available user devices are connected to the backend device
110 e.g., through the network. In a non-limiting example, the
backend device 110 may provide a web service (e.g., in the
form of a website) that the user devices 140a-140n may
access. The backend device 110 may generate a list of internet
protocol (IP) addresses, where each IP address may represent
at least one of the user devices 140a-1407. In another non-
limiting example, the backend device 110 may provide
authentication applications such that each of the user devices
140a-1407 may be identified once authentication to the back-
end device 110 is successful. The database 170 and/or the
memory 112 may maintain a list of user devices 140a-140n
(as identified by suitable identifiers such as the IP addresses,
login credentials, and/or the like).

An identified user device is deemed to be an available user
device when it is not currently processing any data threads
400 sent by the backend device 110. Once connected to the
backend device 110, one of more of the user devices 140a-
1407 may become “busy” when they are processing the data
threads 400 assigned by the backend device 110.

At block B520, the backend device 110 may determine,
with the processor 111, processing power and network con-
ditions associated with each available user device. In some
embodiments, the backend device 110 may determine (e.g.,
via scripts) or cause each available user device to determine
the processing power of each available user device. The pro-
cessing power may refer to the total processing power, the
current available processing power (taken into account pro-
cessing power consumption of processes other than data
thread processing), and the like. In some embodiments, the
processing power (e.g., the total processing power) may be
approximated from the number of user cores 150 available to
a given user device 140z. In a non-limiting example, an
available user device may be deemed as having high process-
ing power when it has 8 or more user cores 150 while another
available user device may be deemed as having low process-
ing power when it has 4 or less user cores 150. In particular
embodiments, the number of user core 150 may refer to a
number of GPU cores.

In some embodiments, the backend device 110 may deter-
mine (e.g., via scripts) the network conditions (e.g., total
network bandwidth, available bandwidth, and/or the like)
associated with each of the available user device. In further

10

15

20

25

30

35

40

45

50

55

60

65

18

embodiments, the backend device 110 may determine the
network conditions associated with the backend device 110 as
well.

Next at block B530, the backend device 110 (via the pro-
cessor 111) may assign a number of data threads for each
available user device based on the processing power and/or
the network conditions associated with each available device.
In general terms, a number of data threads 400 assigned to a
given available user device may be greater when the process-
ing power and/or the network conditions are greater. In some
embodiments, more data threads 400 may be assigned to a
first available user device than to a second available user
device, where the first available user device has more pro-
cessing power (e.g., total processing power, current process-
ing power, and/or the like) as compared to the second avail-
able user device. For example, 475 data threads may be
assigned to an available user device with 16 user cores 150
while 200 data threads may be assigned to an available user
device with 4 user cores 150. In alternative or further embodi-
ments, more data threads 400 may be assigned to a third
available user device than to a fourth available user device,
where the third available user device has improved network
conditions (e.g., more bandwidth, and/or the like) as com-
pared to the third available user device.

The number of data thread(s) assigned to an available user
device may be arranged in a block. A block including at least
one data thread 400 may be sent to each available user device,
and the thread results 460 for each data thread 400 contained
in the block may be returned (together, as a unit) to the
backend device 110.

Determining the number of data threads 400 (e.g., the size
of the block) sent to an available user device at a given
instance based on the processing power and the network
conditions associated with the available user devices in the
manner described can allow efficient data processing for solv-
ing the data job. In various embodiments, the block may
require a small percentage (e.g., 0.5%, 1%, 2%, 5%, 10%,
and/or the like) of the total and/or current processing power of
the user cores 150 of the available user devices such that the
processing of the block may appear negligible to the user of
the available user devices. Accordingly, complex computing
tasks such as live-streaming of 3-dimensional target space
300 may be enabled by the distributed computing framework
100, the distributed data processing method 200, and the
related disclosure herein.

In various embodiments, the data source 120 may continu-
ously and/or periodically feed source data to the backend
device 110 for partitioning (with respect to block B220) and
storing (with respect to block B230). For example, video
cameras (as the data source 120) may continuously feeding
video data (as the source data) to be processed. Thus, as
previous data threads 400 are processed by the available user
devices, new data threads 460 may be partitioned, stored, and
standing by to be processed.

Nextat block B540, the backend device 110 may determine
(with the processor 111) whether at least one data thread 460
remains unassigned to an available user device. Given that the
number of available user devices connected to the backend
device 110 may fluctuate over time, all data threads 400
stored in the database 170 and/or the memory 112 at a given
time may or may not be immediately assigned to an available
user device. When all the stored data threads 400 are assigned
at a given time, the distributed computing framework 100
may possess ample processing power (e.g., a sufficient num-
ber of user cores 150 are made available to the backend device
110) to process the source data almost instantaneous, subject
to only network and processing delays. On the other hand,

US 9,417,911 B2

19

large number of data threads 400 remaining after assignment
at a moment time may indicate insufficient processing power
and larger processing time of the source data.

In some embodiments, the resolution of the job outcome
may be adjusted based on processing power (e.g., the number
of available user cores 150). For example, when a higher
number of available user cores 150 (exceeding a predeter-
mined threshold) are connected to the network 130, the job
outcome (e.g., processed image data) may be of a higher
resolution, which requires more processing power. On the
other hand, when a lower number of available user cores 150
(below a predetermined threshold) are connected to the net-
work 130, the job outcome (e.g., processed image data) may
be of a lower resolution, which requires less processing
power.

Whereas there are no data threads 400 remaining unas-
signed, the data thread assignment method 500 may be ter-
minated at block B550 (B540:NO). In some examples, there
are no data threads 400 remaining when all the outstanding
partitioned (with respect to block B220) and stored (with
respectto block B230) data threads 400 have been assigned to
an available user device. In some embodiments, this may
occur when the data source 120 is no longer receiving source
data. In other embodiments, this may occur when the data
source 120 has not yet transmitted new source data to the
backend device 110 or when the backend device 110 has not
yet partitioned or stored new data threads 400 corresponding
to new source data.

In various embodiments, the backend device 110 may be
configured to standby for new data threads 400 to be parti-
tioned/stored when no data thread remains (B540:NO). Upon
determining (e.g., with the processor 111) that new data
threads 400 are stored, the backend device 110 may assign a
number of new data threads 400 for each available user device
at the time based on processing power and/or network condi-
tions associated with each available user device such as, but
not limited to, described with respect to block B530. The data
thread assignment method 500 may continue from block
B530 onward (e.g., to blocks B530, B540, B550, B560,
B570, and/or B580).

Whereas there are data threads 400 remaining unassigned,
the backend device 110 may standby for additional user
devices at block B560 (B540:YES). The standing by block
B560 may be terminated when the backend device 110
detects at least one additional user device e.g., the user device
140a-1407 at block B570. In some embodiments, a busy user
device be detected to be an additional user device when that
busy user device (e.g., a user device assigned to process a
block of data thread(s)) completes processing the block and
returns thread results 460 for each of the data threads 400
contained in the block. In further embodiments, a user device
140x that has been identified by the backend device 110 (in a
manner such as, but not limited to, as described with respect
to block B510) subsequent to the remaining data thread 400
remaining block B540 may be deemed as an additional user
device.

The backend device 110 may periodically seek to detect,
with the processor 111, whether an additional user device is
present. When no additional user device has been detected,
the backend device 110 may revert to the standing by at block
B560 (B570:NO) until at least one additional user device has
been detected. Whereas the at least one additional user device
has been detected in the manner described, the backend
device 110 may set the detected additional user device as an
available device at block B580 (B570:YES). Next, the back-
end device 110 may assign data thread(s) 400 (remaining data
thread(s) and new unprocessed data thread(s) partitioned and

10

15

20

25

30

35

40

45

50

55

60

65

20

stored) to each available (e.g., additional) user device based
on processing power and/or network conditions associated
with each available user device such as, but not limited to, as
described with respect to block B530.

FIG. 6is a schematic block diagram illustrating an example
of data thread assignment and reassignment diagram 600
according to various embodiments. In various embodiments,
the data thread assignment and reassignment diagram 600
may correspond to block B240 of the distributed data pro-
cessing method 200 of FIG. 2.

Now referring to FIGS. 1-6, data sources 120 may include
a first camera (e.g., camera A 610a) and a second camera
(e.g., camera B 6204). Each of the camera A 610a and the
camera B 6105 may feed image/video data as the source data
to the backend device 110 to be partitioned and stored for
processing as described. For example, the camera A 610a
may send a first frame 620a and a second frame 6205 to the
backend device 110. The first frame 620a and the second
frame 6205 may be consecutive frames. The camera B 6105
may send a first frame' 630a and a second frame' 6305 to the
backend device 110. The first frame' 630a and the second
frame' 6305 may be consecutive frames.

Each of the first frame 620a, the second frame 6205, the
first frame' 630a, the second frame' 6305 may be divided into
aplurality of data threads (such as, but not limited to, the data
thread 400) by the processor 111 of the backend device 110.
As described, each frame may include a plurality of areas.
Each area may correspond to a vertex (such as, but not limited
to, the vertices 320a-320g) within a given space (such as, but
not limited to, the target space 300). For example, the first
frame 620a may include a first thread 1 6224, a first thread 2
622b, afirstthread 3 622¢, and a first thread 4 6224. In various
embodiments, each frame may include 400, 1,000, 5,000,
20,000, 360,000 data threads. For illustrative purposes, only 4
data threads for each frame are illustrated.

Each of the data threads (e.g., the first thread 1 622a-first
thread 4 622d, second thread 1 624a-second thread 4 6244,
the first thread' 1 626a-first thread' 4 6264, and second thread
1 628a-second thread 4 6284) may be assigned to an available
user device as identified, for example, with respect to block
B510. The first thread 1 622a may be assigned to a user device
1 6904, a first thread 2 6225 may be assigned to a user device
26905, . .. ,and the second thread' 4 may be assigned to a user
device 16 690p. It should be appreciated that blocks of vari-
ous sizes (e.g., containing various numbers of data threads)
may be assigned to different user devices. One data thread is
shown to be assigned to a disparate user device for simplicity.

Second thread 2 6245 may be assigned (initially) to a user
device 6 690f for processing. In some embodiments, the pro-
cessing of a data thread 400 assigned to an available user
device (e.g., the user device 6 690f) may fail for various
reasons such as, but not limited to, network failure, active
disconnection from the backend device 110, processing fail-
ure, unsuccessful transmission of the data thread 400 or the
result thread (e.g., the data thread result 470), a combination
thereof, and/or the like. The backend device 110 may detect
such failures and reassign the second thread 2 6245 to another
user device (e.g., the user device 17 690¢) for processing.

In some embodiments, data threads 400 corresponding to
frames received prior in time for a given camera (e.g., the
camera A 610a) may be prioritized (by the processor 111 of
the backend device 110) over frames of the same camera or
another camera (e.g., camera B 6105) received later in time.
Prioritizing one data thread 400 over another refers to the one
data thread 400 being assigned an available user device while
the another data thread 400 being assigned to another user
device only when an additional user device is available. In

US 9,417,911 B2

21

other words, when a data thread from a prior frame (e.g., the
first thread 1 622a) and a data thread from a later frame (e.g.,
the second thread 1 624a) are standing by to be assigned to a
user device, the data thread 400 from the prior frame may be
assigned to an available user device first. For example, the
first thread 1 622a (instead of the second thread 1 624a) may
be assigned to the user device 1 690a when only the user
device 1 690q is available at the time of assignment. The
second thread 1 624a may be assigned to the user device 5
690¢ when the user device 5 690e becomes available at a later
time.

In some embodiments, a failed data thread 400 correspond-
ing to a frame received prior a given camera may be priori-
tized (by the processor 111 of the backend device 110) over
data threads corresponding to frames of a same or different
camera. In particular embodiments, failed data thread 400
may be prioritized only over data threads 400 of a subsequent
frame (of a same or different camera) yet to be processed.

Accordingly, multiple data threads 400 (or blocks) may be
processed in parallel asynchronously over multiple user
devices 140a-140n (or user cores 150). Each data thread
400/block may be processed by a user device 140» indepen-
dent of the processes of other user devices 140a-140% for
other data threads 400/blocks. Any user device 140r can
process any data thread 400 when the user device 140n
becomes available for processing. It should be noted that
prioritizing of data threads based on time (e.g., the sequential
ordering of frames) and processing status (e.g., failed data
threads may be processed first with an available user device to
control stream delaying) may be implemented to optimize the
process as described.

Advantages associated with the distributed data processing
systems and methods also include free scaling of processing
power. The processing power of the distributed data process-
ing systems may depend on the number of user devices 140a-
140n connected to the backend device 110 (e.g., which may
be an asynchronous NoSql metadata server). The processing
power is scaled up when more user devices 140a-1407 are
connected to the backend device 110, vice versa.

In some embodiments, the data processing at the user
device (e.g., the user devices 140a-1407) may be executed
(e.g., as trigger in a web browser) without requiring special
plugins, thus simplifying the data processing. For example,
each ofthe user devices 140a-1407 may be a HTMLS capable
web client that may execute data processing in the manner
described without the use of plugins. In some embodiments,
all barriers to connect the user devices 140a-140% to the
backend device 110 and to retrieve unprocessed data may be
eliminated. No software is required to be downloaded for
processing. The data processing requires minimal processing
power of the user devices 140a-140r as compared to the total
or currently available processing power. In various embodi-
ments, the data processing of the data threads 400/blocks has
very little impact, if any, on the user experience of using the
user devices 140a-1407.

FIG. 7 is an example screen illustrating a management
interface 700 in some embodiments. The management inter-
face 700 may be displayed by the user interface 114 of the
backend device 110 to designated personnel operating the
backend device 110. Through the management interface 700,
the designated personnel may monitor the distributed data
process (e.g., the distributed data processing method 200 of
FIG. 2, the data thread assignment method 500 of FIG. 5, the
data processing method 800 of FIG. 8, a combination thereof,
and/or the like).

Referring to FIGS. 1-7, the management interface 700 may
be configured as a window interface being displayed by the

10

15

20

25

30

35

40

45

50

55

60

65

22

display device of the user interface 114 of the backend device
110. The management interface 700 may include at least a
devices table 710 and a data job diagram 720. The devices
table 710 and/or the data job diagram 720 may be arranged in
any suitable positions, sizes, orientation within the manage-
ment interface 700. The management interface 700 may
include an option to purchase additional user devices (such as
user devices 140a-140r) from a third-party cores (such the a
user core 150) provider when the available user devices 140a-
1407 connected to the network 130 may not be enough to
process the computing task (e.g., the source data).

The devices table 710 may list a plurality of user devices
(e.g., the user devices 140a-1407) connected to the backend
device 110. In other words, the devices table 710 may display
the available user devices as identified with respect to block
B510. Each of the available user devices may be listed in
separate entries (e.g., rows) such as, but not limited to, a first
entry 740a, a second entry 74054, a third entry 740c¢, a fourth
entry 7404, and a fifth entry 740e. Additional entries may be
displayed in the devices table 710.

Each of the available user device may be identified by an
unique identification such as, but not limited to, the IP
addresses listed in the IP address column 715. For example,
each of the entries 740a-740¢ may include a corresponding IP
address identified in the IP address column 715. Each IP
address may be associated with two or more of the user
devices. For each of the entries 740a-740e, a total number of
cores is displayed in the total cores column 730 according to
some embodiments. Each of the user device may be associ-
ated with at least one core. For example, the user device
associated with the first entry 740a (with IP address
75.82.189.xx) may include 32 cores. In another example, the
user device associated with the fifth entry 740e (with IP
address 79.61.525.xx) may include only 4 cores.

The execution time (as shown in the execution time column
735) associated with each IP address may be displayed in the
devices table 710. In some embodiments, the execution time
may be an average time required to process one of the
assigned data threads. Thus, the execution time associated
with each IP address may depend on the processing power
(e.g., the higher processing power may be associated with
faster execution time). For example, the user device associ-
ated with the first entry 740a (with IP address 75.82.189.xx)
may require 25.2 ms to execute each data thread assigned. In
another example, the user device associated with the fifth
entry 740¢ (with IP address 79.61.525.xx) may require 41.7
ms to execute each data thread assigned. In other embodi-
ments, the execution time may take into account network
conditions. For example, the execution time may be measured
from transmission of the data thread by the backend device
110 to the receiving of the thread result, thus taking into
account network transmission delays.

In some embodiments, the devices table 710 may include a
number of data threads processed and/or a number of data
threads assigned to the corresponding IP address by the back-
end device 110. For example, the user device associated with
the first entry 740a (with IP address 75.82.189.xx) may be
assigned 475 data threads to process, all of which have been
processed. In another example, the user device associated
with the fifth entry 740e (with IP address 79.61.525 xx) may
be assigned 100 data threads to process, 10 of which have
been processed.

In some embodiments, the devices table 710 may include a
frames per second (FPS) as indicated in the FPS column 755
corresponding to each IP address listed in the IP address
column 715. FPS indicates performance in consuming the job
results, which is determined by the backend device 110 based

US 9,417,911 B2

23

on the thread result 460 from each of the available user
devices. The job results may be transmitted to the user devices
140a-1407 for consumption. The job results may be weight-
ing values associated with each vertex (e.g., the vertices
320a-320/) within a target space (e.g., the target space 300)
for live 3-dimensional streaming. Increase in processing
capabilities and network conditions may lead to higher FPS,
vice versa.

The data job diagram 720 may illustrate the source data
and/or the data job. In some embodiments, a data job may be
processing graphics data. Specifically, the data job shown in
the data job diagram 720 is to process a frame 795 including
captured data 750. As described each data job may be seg-
mented into a plurality of data threads (e.g., data threads
760-775). Each data thread may be associated with a dispar-
ate area within the frame 795.

In further embodiments, the management interface 700
may include graphs and diagrams that graphically illustrate
the processed data jobs with respect to the overall number of
data jobs, time, number of cores, number of available/bus user
devices, a combination thereof, and/or the like.

FIG. 8 is a process flowchart illustrating an example of a
data processing method 800 according to various embodi-
ments. The data processing method 800 may be performed by
a user device (e.g., the user devices 140a-140#). Referring to
FIGS. 1-8, the user device 140n may connect to the backend
server 110 at block B810. In various embodiments, the user
device 1407 may connect (via the user network device 163) to
the backend device 110 by assessing a website hosted by the
backend device 110 or by logging onto the backend device
110. In other words, the user device 1407z may be connected
to the backend device 110 when it has been identified by the
backend device 110 according to block B510.

Next at block B820, the user device 140» may receive a
data block including at least one data thread 460, there the
data block is set to be the current data block. In some embodi-
ments, the backend device 110 may periodically push the data
blocks/threads to the user devices 1404-1407 in the manner
described. In other embodiments, each of the user devices
140a-1407 may transmit a request to the backend device 110
(when data processing is complete) to receive a new data
block/thread to process, in a pull. The data sent to be backend
devices 140a-1407 may be based on a prioritized list of data
blocks/threads in the manner described.

Next at block B830, the user device 140z may be config-
ured to process the current data block. In some embodiments,
processing the current data block may include determining
the weighting value for a color associated with an area of the
frame, the area corresponding to a vertex (e.g., the vertices
320a-320%) within the target space 300. Next at block B840,
the user device 140z may send block result to the backend
server 110. The block result may include at least one data
thread result 470.

Next at block B850, the user device 140z may determine
whether an additional data block has been received from the
backend device 110. When no additional data block has been
received from the backend device 110 by the user device
140n, the user device 140z may standby at block B860 (B850:
NO). On the other hand, whereas at least one additional data
block has been received from the backend device 110 by the
user device 140z, the user device 1407 may be configured to
set the additional data block as the current data block at block
B880 (B850:NO) to be processed at block B830.

After connecting to the backend device 110 at block B810,
the user device 140z may receive a first job result from the
backend device 110 for consumption at block B895. The first
job result may be based on block results outputted by user

10

15

20

25

30

35

40

45

50

55

60

65

24

devices (e.g., the user device 1404, the user device 1405, . . .
, the user device 1407-1) other than the user device 140n. For
example, the first job result may be determined based on data
threads/blocks processed previously by other user devices
before the user device n 140% is connected to the backend
device.

After sending the block result to the backend server 110 at
block B840, the user device 1407 may receive a second job
result from the backend device 110 for consumption at block
B890. The second job result may be based on block results
outputted by user devices (e.g., the user device 140qa, the user
device 1405, . . ., the user device 140r-1) as well as the user
device 140n.

When the user device 140z is standing by at block B860 as
it does not receive any data blocks to process, the user device
1407 may receive a third job result from the backend device
110 for consumption at block B870. The third job result may
be based on block results outputted by user devices (e.g., the
user device 140a, the user device 14054, . . ., the user device
1407-1) other than the user device 140x.

The job results (e.g., the weighting values associated with
the vertices 320a-320/) may be used to determine a 3-dimen-
sional projection of the target space 300 for outputting live
3-dimensional videos by the user device interface 164.

FIG. 9 is a process flow chart illustrating an example of a
GPU-oriented distributed data processing method 900
according to various embodiments. Referring to FIGS. 1-9,
the GPU-oriented distributed data processing method 900
may be particular implementations of the distributed data
processing method 200, the data processing method 800,
and/or related systems and processes described herein. For
example, the GPU-oriented distributed data processing
method 900 may correspond to block B830 of data processing
method 800. The GPU-oriented distributed data processing
method 900 may be implemented with user devices such as,
but not limited to, the user devices 140a-140%. In particular
embodiments of the GPU-oriented distributed data process-
ing method 900, at least one GPU may be implemented as the
user core 150 of the user devices.

First at block B910, the user device (via its processing unit
160 or its GPU core) may identify at least one portion of
source data corresponding to data block received (e.g., at
block B830), the source data being formatted in GPU-com-
patible format for processing by the GPU of the user device.
The source data may be encoded or formatted according to
GPU-compatible format (by the backend device 110 or by the
data source 120) for processing by the GPUs of the user
devices. For example, shader language standards may be used
for GPU processing. The source data may be encoded or
otherwise formatted into elements such as, but not limited to,
geometry, vertices, textures, normals, the code for the shader
language itself, and/or the like. Once converted, the source
data may be streamed or otherwise sent into the shader for
GPU processing. In particular embodiments, the source data
(e.g. images or frames of videos) may be formatted into
textures (as compared to other elements) for fast GPU pro-
cessing (e.g., at 120 fps).

The data block may include at least one data thread, each
data thread may include metadata (e.g., location of the actual
source data, particular identifiers of the portions of the source
data, processing parameters, and/or the like) corresponding to
the source data (e.g., an image or a frame of a video). Based
on the location (e.g., URL data) of the source data and the
identifier of the portion of the source data relating to this data
thread (e.g., coordinates of an area of the image/frame), the
user device may locate and retrieve the relevant portions of
the source data for processing from the data sources 120. This

US 9,417,911 B2

25

may occur once the source data has been received at the user
device in shader (or other suitable GPU-compatible format)
format.

Next at block B920, the user device may process, with at
least one GPU, the at least one portion (as identified in block
B910) of the source data in GPU-compatible format (e.g., in
shader language as described). Generally, the processes may
relate to any processes involving a string of math functions,
which may also take advantage of OpelGL optimized pipeline
for matric math and low level functions to complete in an
efficient manner.

In some particular embodiments, such processes may
involve projecting a 2-dimensional image (which is formatted
in shader language as a texture or other suitable elements) to
a set of vertices (e.g., vertices 320a-320/) defined within a
target space (e.g., the target space 300). For example, a set of
all vertices of the target space or a portion thereof (e.g., a
subset of the entire set of vertices, the subset of vertices may
be arranged in suitable manner such as in a line, a plane, in a
volume, or the like) may be set with the data blocks/threads or
separately via other data units to the user devices. The user
device may project at least one of the vertices received to an
area of the frame/image as identified by the metadata sent as
the data blocks/threads.

In other or further particular embodiments, the user device
may determine, with its GPU, display characteristics of an
area of the frame/image, which corresponds to at least one
vertex. By way of illustrating with a non-limiting example,
the user device may be configured to average a number of
surrounding pixels with respect to a target pixel (which may
be an area of an image identified by the data thread) to output
the average as the color for the target pixel.

Next at block B930, the user device may render, with the at
least one GPU, results of the processing (e.g., at block B920)
to the user interface 164 (e.g., the display device of the user
interface 164) of the user device. After processing is com-
pleted, the GPU may render the results to the screen of the
user device. Next at block B940, the user device may copy
and send the rendered results back to the backend device 110
or another remote storage for aggregation any computing the
job outcome in the manner described. Accordingly, the pro-
cessed results may be readily and speedily transmitted out of
the GPU and the user device.

FIG. 10 is a process flow chart illustrating another example
of' a GPU-oriented distributed data processing method 1000
according to various embodiments. Referring to FIGS. 1-10,
the GPU-oriented distributed data processing method 1000
may be particular implementations of the distributed data
processing method 200 and/or related systems and processes
described herein. For example, the GPU-oriented distributed
data processing method 1000 may correspond to blocks B240
and B250 of the distributed data processing method 200. The
GPU-oriented distributed data processing method 1000 may
be implemented with the backend device 110. In particular
embodiments of the GPU-oriented distributed data process-
ing method 1000, at least one GPU may be implemented as
the user core 150 of the user devices.

First at block B1010, the backend device 110 (or the data
source 120, or another device) may provide source data in
GPU-compatible format for distributed processing by a plu-
rality of GPUs. Each GPU may be associated with a user
device. For example, shader language standards may be used
to program GPU processing. The source data may be encoded
or otherwise formatted into elements such as, but not limited
to, geometry, vertices, textures, normals, and the code for the
shader language itself. Once converted, the source data may
be streamed or otherwise sent into the shader for GPU pro-

10

15

20

25

30

35

40

45

50

55

60

65

26

cessing. In particular embodiments, the source data may be
converted into textures (as compared to other elements) for
fast GPU processing (e.g., at 120 fps).

Next at block B1020, the backend device 110 may send at
least one data block corresponding to at least one portion of
the source data to each of the plurality of GPUs in the manner
such as, but not limited to, in block B240. The at least one data
block may include at least one data thread, each data thread
may include metadata (e.g., location of the source data, par-
ticular identifiers of the portions of the source data, process-
ing parameters, and/or the like) corresponding to the source
data (e.g., an image or a frame of a video). Based on the
location (e.g., URL data) of the source data and the identifier
of the portions of the source data relating to this data thread
(e.g., coordinates of an area of the image), the user device may
locate and retrieve the relevant portions of the source data for
processing. This may occur once the source data has been
received at the user device in shader format.

Next at block B1030, backend device 110 may receive
results from each of the plurality of GPUs, each result has
been rendered to the user interface 164 associated with each
of' the plurality of GPUs in a manner such as, but not limited
to, block B250. The user device may process, with at least one
GPU, the at least one portion (as identified in block B910) of
the source data in GPU-compatible format (e.g., in shader
language as described) in a manner such as, but not limited to,
described with respect to block B920. The GPUs may then
render the results to the user interface such as described with
respect to B930. and copied and transmitted to the backend
device 110 at block B940.

Various particular implementations of the asynchronous
computing web framework may be related to image/video
processing (e.g., filtering images, facial recognition in
images, 3-dimensional projections, and the like), processing
of gene data, currency arbitrage data, weather data, vertex
data, chemical formulas, or other arbitrary data required by
distributed computing tasks. In other words, the source data
may be any parallel data set. In some embodiments, different
data sets may take advantage of geographic distribution of the
user devices 140a-1407 to enable solutions for big data prob-
lems.

In some additional embodiments, the distributed comput-
ing processing framework 100 may be implemented to solve
currency exchange arbitrage algorithms (for example, using
the Bellman Ford shortest path algorithm, which determines
infinite loop cycles when a log of the currency exchange rates
are taken). In some embodiments, each of the user devices
140a-1407 may be associated with a currency. The associated
currency (the data of which may be in the form of data
blocks/threads) may be assigned by the backend device 110
based on geographical location associated with each of the
user devices 140a-1407 (i.e., each of the user devices 140a-
1407 may be assigned the currency used in the geographical
location). As such, when a user device 140a-1407 detects an
infinite loop cycle corresponding to the assigned currency, it
may be closer to a financial institution which can trade the
assigned currency most efficiently. For example, the user
device may be in or proximal to the financial institution. The
user devices 140a-1402 may be connected to the backend
device 110 using a browser or connecting to a social network
using the distributed computing framework 100 in the back-
ground for data processing, which the users of the user
devices 140a-1407 are unaware. Accordingly, such distrib-
uted computing framework 100 may out-scale centralized
arbitrage super computers as bandwidth capabilities of the
network 130 increase. The distributed computing framework

US 9,417,911 B2

27

100 (e.g., the backend device 110) may be implemented with
social networks (as the network 130).

In some additional embodiments, raw video/image data
(e.g., as the source data) may be spread out and encoded in
parallel overlapping segments (e.g., received at block B210,
partitioned at block B220, stored at block B230, and sent at
block B240), each segment may be treated as a data block/
thread to be processed by a separate one of the user devices
140a-140%. As such, any data block/thread may complete
processing (e.g., at block B250-B260) before any encoding
system can finish encoding an entire video/image. As such, all
the segments of the raw video/image data may be done at
once, around the same time. Servers with large amount ofuser
devices 140a-1407 (e.g., social network sites) may provide
unprecedented amount of processing power.

In some additional embodiments, gene sequence data may
be receive (e.g., at block B210), partitioned (e.g., at block
B220), and stored (e.g., at block B230) as data blocks/threads.
The data blocks/threads may be sent to the user devices 140a-
140n (e.g., at block B240) for processing (e.g., at block
B250). In particular, the gene sequence data may be divided
based on gene classifications (at block B220) for parallel
processing. Search windows may be provided across strings
of DNA and sent into the distributed computing framework
100 for automated classification.

In other additional embodiments, images stored on social
networks may be processed slowly over time to automatically
identify any arbitrary corners or features, then send to the user
devices 140a-140% to identify the corners or features when
sufficient number of the corners or features have been iden-
tified together to form objects and people. Overtime, all
objects and people can be automatically learned by the dis-
tributed computing network 100, which is constantly being
taught by its users’ inputs. The identification processes may
be achieved virtually costless to the social networks, as the
identification processes are completed by the user devices
140a-1407 connected to the network 130 (e.g., the social
networks).

Various embodiments described above with reference to
FIGS. 1-8 include the performance of various processes or
tasks. In various embodiments, such processes or tasks may
be performed through the execution of computer code read
from computer-readable storage media. For example, in vari-
ous embodiments, one or more computer-readable storage
mediums store one or more computer programs that, when
executed by a processor cause the processor to perform pro-
cesses or tasks as described with respect to the processor in
the above embodiments. Also, in various embodiments, one
or more computer-readable storage mediums store one or
more computer programs that, when executed by a device,
cause the computer to perform processes or tasks as described
with respect to the devices mentioned in the above embodi-
ments. In various embodiments, one or more computer-read-
able storage mediums store one or more computer programs
that, when executed by a database, cause the database to
perform processes or tasks as described with respect to the
database in the above embodiments.

Thus, embodiments include program products including
computer-readable or machine-readable media for carrying
or having computer or machine executable instructions or
data structures stored thereon. Such computer-readable stor-
age media can be any available media that can be accessed, for
example, by a general purpose or special purpose computer or
other machine with a processor. By way of example, such
computer-readable storage media can include semiconductor
memory, flash memory, hard disks, optical disks such as
compact disks (CDs) or digital versatile disks (DVDs), mag-

10

15

20

25

30

35

40

45

50

55

28

netic storage, random access memory (RAM), read only
memory (ROM), and/or the like. Combinations of those types
of memory are also included within the scope of computer-
readable storage media. Computer-executable program code
may include, for example, instructions and data which cause
a computer or processing machine to perform certain func-
tions, calculations, actions, or the like.

The embodiments disclosed herein are to be considered in
all respects as illustrative, and not restrictive. The present
disclosure is in no way limited to the embodiments described
above. Various modifications and changes may be made to the
embodiments without departing from the spirit and scope of
the disclosure. Various modifications and changes that come
within the meaning and range of equivalency of the claims are
intended to be within the scope of the disclosure.

What is claimed is:

1. A method for processing data, the method comprising:

receiving, by a backend device, source data related to a

target space, the target space is defined by a plurality of
vertices;

partitioning, by the backend device, the source data into a

plurality of data threads, each of the plurality of data
threads is associated with at least one of the plurality of
vertices;
sending, by the backend device, at least one of the plurality
of data threads to each of a plurality of user devices;

receiving a plurality of data thread results from the plural-
ity of user devices, each of the plurality of data thread
results corresponds to at least one of the plurality of data
threads, wherein each of the plurality of data thread
results comprises at least one display characteristic asso-
ciated with at least one of the plurality of vertices; and

determining, by the backend device, a job outcome for the
source data based on the plurality of data thread results;

wherein the job outcome comprises weighting factors for
display characteristics associated with each of the plu-
rality of vertices.

2. The method of claim 1, wherein:

the source data is a captured video frame.

3. The method of claim 2, wherein:

partitioning of the source data into the plurality of data

threads comprises partitioning the captured video frame
into a plurality of areas based on metadata associated
with the captured video frame and the plurality of areas,
each of the plurality of areas corresponds to one of the
plurality of data threads.

4. The method of claim 2, wherein the partitioning of the
source data into the plurality of data threads comprises par-
titioning the source data based on pixels of the source data.

5. The method of claim 2, wherein the frame is an image of
a target space.

6. The method of claim 5, wherein;

the target space comprises of a plurality of vertices; and

each of the plurality of vertices corresponds to a 3-dimen-

sional portion of the target space.

7. The method of claim 6, wherein:

each of the plurality of data threads is associated with at

least one of the plurality of vertices; and

each of'the plurality of data threads corresponds to an area

of the image.

8. The method of claim 7, wherein each of the data thread
results is determined by determining a weighting value asso-
ciated with at least one display characteristics associated with
the area of the image.

9. The method of claim 8, wherein the display character-
istics comprises at least a color associated with the area of the
image.

US 9,417,911 B2

29

10. The method of claim 6, wherein the image captures at
least some of the plurality of vertices.

11. The method of claim 1, wherein determining the job
outcome comprises:

receiving, by the backend device, the plurality of data

thread results from the plurality of user devices; and
determining the job outcome for the data job based on the
received plurality of data thread results.

12. The method of claim 1, wherein sending the at least one
of the plurality of data threads comprises:

determining at least one of processing power and network

conditions for each of the plurality of user devices; and
assigning each of the plurality of user devices at least one

of'the plurality of data threads based on at least one of the

processing power and the network conditions.

13. The method of claim 1, further comprising formatting
the source data into graphic processing unit (GPU)-compat-
ible format, wherein each of the plurality of data thread
results is determined by at least one GPU associated with each
of the plurality of user devices.

14. The method of claim 13, wherein the GPU-compatible
format is associated with shader language.

15. The method of claim 14, wherein the source data is
formatted into at least one of the following elements: geom-
etry, vertices, textures, normals, and code for the shader lan-
guage.

16. The method of claim 1, further comprising receiving,
by the backend device, the plurality of data thread results after
the plurality of data thread results have been rendered to the
display screen associated with each of the user devices.

17. The method of claim 1, further comprising streaming
the job outcome to a Content Delivery Network (CDN) in the
form of depth videos.

18. An apparatus for processing data, the apparatus com-
prising:

a backend device, the backend device is configured to:

receive source data related to a target space, the target
space is defined by a plurality of vertices;

partition the source data into a plurality of data threads,
each of the plurality of data threads is associated with
at least one of the plurality of vertices;

send at least one of the plurality of data threads to each
of a plurality of user devices;

receive a plurality of data thread results from the plural-
ity of user devices, each of the plurality of data thread
results corresponds to at least one of the plurality of
data threads, wherein each of the plurality of data
thread results comprises at least one display charac-
teristic associated with at least one of the plurality of
vertices; and

determine a job outcome for the source data based on the
plurality of data thread results;

5

20

25

30

35

40

45

30

wherein the job outcome comprises weighting factors
for display characteristics associated with each of the
plurality of vertices.

19. A non-transitory computer-readable storage medium
storing program instructions that, when executed, causes a
processor to:

receive source data related to a target space, the target space

is defined by a plurality of vertices;

partition the source data into a plurality of data threads,

each of the plurality of data threads is associated with at

least one of the plurality of vertices;

send at least one of the plurality of data threads to each
of a plurality of user devices;

receive a plurality of data thread results from the plurality

of user devices, each of the plurality of data thread
results corresponds to at least one of the plurality of data
threads, wherein each of the plurality of data thread
results comprises at least one display characteristic asso-
ciated with at least one of the plurality of vertices; and

determine a job outcome for the source data based on a

plurality of data thread results;

wherein the job outcome comprises weighting factors for

display characteristics associated with each of the plu-
rality of vertices.

20. A method for processing data by a user device, the
method comprising:

receiving, from a backend device, a data thread, the thread

corresponds to at least one of an image or a video frame
capturing at least one of a plurality of vertices defining a
target space;

determining a data thread result, the data thread result

comprising at least one display determining a data
thread result, the data thread result comprising at least
one display characteristic associated with each of the at
least one of the plurality of vertices;

sending the data thread result to the backend device;

receiving, from the backend device, a job outcome,

wherein the job outcome is determined based, at least in
part, on the data thread result; and

displaying a 3-dimensional projection of the target space

based on the job outcome;

wherein the job outcome comprises weighting factors for

display characteristics associated with each of the plu-
rality of vertices.

21. The method of claim 20, wherein the data thread results
are determined by:

rendering the data thread results to a display screen of the

user devices; and

copying the data thread results rendered to the display

screen.

